User Tools

Site Tools


Sidebar

projects

wcp1 (due 20240828)
wcp2 (due 20240904)
pct0 (bonus; due 20240905)
pct1 (bonus; due 20240905)
pct2 (due 20240905)
abc0 (due 20240906)
gtf0 (due 20240911)
pct3 (bonus; due 20240911)
wcp3 (due 20240911)
dtr0 (due 20240918)
pct4 (due 20240918)
wcp4 (due 20240918)
pct5 (bonus; due 20240926)
stl0 (due 20240926)
wcp5 (due 20240926)
gfo0 (due 20241002)
pct6 (due 20241002)
stl1 (due 20241002)
wcp6 (due 20241002)
pct7 (bonus; due 20241009)
stl2 (due 20241009)
wcp7 (due 20241009)
bwp1 (bonus; due 20241016)
pct8 (due 20241016)
ptb0 (due 20241016)
wcp8 (due 20241016)
pct9 (bonus; due 20241023)
ptb1 (due 20241023)
wcp9 (due 20241023)
gfo1 (due 20241030)
pctA (due 20241030)
ptb2 (due 20241030)
wcpA (due 20241030)
pctB (bonus; due 20241106)
wcpB (due 20241106)
wus0 (due 20241106)
pctC (due 20241113)
wcpC (due 20241113)
wus1 (due 20241113)
pctD (bonus; due 20241120)
wcpD (bonus; due 20241120)
wus2 (due 20241120)
bwp2 (bonus; due 20241204)
gfo2 (due 20241204)
pctE (bonus; due 20241204)
wcpE (bonus; due 20241204)
EoCE (due 20241216)
haas:fall2024:c4eng:signedvalues

Signed vs. Unsigned Values

Binary (Base 2) Signed Decimal (Base 10) Unsigned Decimal (Base 10) Hexadecimal (Base 16)
0 0 0 0 0 0 0x0
0 0 0 1 1 1 0x1
0 0 1 0 2 2 0x2
0 0 1 1 3 3 0x3
0 1 0 0 4 4 0x4
0 1 0 1 5 5 0x5
0 1 1 0 6 6 0x6
0 1 1 1 7 7 0x7
1 0 0 0 -8 8 0x8
1 0 0 1 -7 9 0x9
1 0 1 0 -6 10 0xA
1 0 1 1 -5 11 0xB
1 1 0 0 -4 12 0xC
1 1 0 1 -3 13 0xD
1 1 1 0 -2 14 0xE
1 1 1 1 -1 15 0xF

A signed value is when we take a bit (usually the most significant bit) and reserve it for the sign. This shifts the representable range of values, straddling 0. We still have the same quantity of values as in the unsigned range, we just represent them differently.

We use a technique called two's complement to represent signed values (the negative values, specifically).

In this case, a leading 0 indicates a positive value, and a leading 1 indicates a negative value.

For example- 1000, leading one, so negative. Negative what?

Step one- invert: 1000 becomes 0111.

Step two- add one: 0111+1 = 1000. This is a -8.

Another example: 1101.

Invert: 0010

Add one: 0010+1 = 0011 (this is a 3, and we know we started with a leading 1, so 1101 is -3).

haas/fall2024/c4eng/signedvalues.txt · Last modified: 2012/09/15 15:06 by 127.0.0.1