User Tools

Site Tools


haas:fall2019:data:projects:sll3

Corning Community College

CSCS2320 Data Structures

Project: SLL3

Errata

This section will document any updates applied to the project since original release:

  • revision #: <description> (DATESTAMP)

Objective

This is a transitional project, making a few modifications to the list struct forcing some changes to a few functions so that we can better explore the next topic (in sll4).

As such, while this is a standalone project, it should be considered a small one, and one that is given out in combination with another (again: sll4), so be mindful of time management.

You will need to complete this project prior to upgrading to sll4.

Project Overview

list.h

For this project, we need to make a couple modifications to the list struct (which you can also check out in inc/list.h):

//////////////////////////////////////////////////////////////////////
//
// list struct definition
//
struct list {
    Node              *lead;            // pointer to start of list
    Node              *last;            // pointer to end of list
    struct list       *next;            // pointer to the next list
    unsigned long int  qty;             // number of nodes in list
};
typedef struct list            List;    // cuz we deserve nice things

Specifically, we have an after pointer, so that we can point to an entirely separate list, along with a newly added qty variable, which will keep track of the number of nodes in the list.

To implement qty, all list functions that perform manipulations to the list will need to see some updating (insert(), append(), obtain(), and mklist())

To implement the list's new next pointer, you'll want to enhance mklist() and cplist() accordingly.

Expected Results

To assist you in verifying a correct implementation, a fully working implementation of the node library, list library (with new modifications), and group library should resemble the following:

list library

sll3 list functions

Here is what you should get for the specific functions relevant to sll3:

lab46:~/src/data/sll3$ make check
======================================================
=    Verifying Singly-Linked  List Functionality     =
======================================================
    [mklist] Total:  21, Matches:  21, Mismatches:   0
    [cplist] Total:  14, Matches:  14, Mismatches:   0
    [insert] Total:  21, Matches:  21, Mismatches:   0
    [append] Total:  21, Matches:  21, Mismatches:   0
    [obtain] Total:  44, Matches:  44, Mismatches:   0
======================================================
   [RESULTS] Total: 121, Matches: 121, Mismatches:   0
======================================================
lab46:~/src/data/sll3$ 

entire list

Here is what you should get for all the functions completed so far in the list library (sll0+sll1+sll2+sll3):

lab46:~/src/data/sll3$ bin/verify-list.sh
======================================================
=     Verifying Singly-Linked List Functionality     =
======================================================
    [mklist] Total:  21, Matches:  21, Mismatches:   0
    [insert] Total:  21, Matches:  21, Mismatches:   0
  [displayf] Total:  10, Matches:  10, Mismatches:   0
    [getpos] Total:   8, Matches:   8, Mismatches:   0
    [setpos] Total:   9, Matches:   9, Mismatches:   0
    [append] Total:  21, Matches:  21, Mismatches:   0
[searchlist] Total:  11, Matches:  11, Mismatches:   0
    [cplist] Total:  14, Matches:  14, Mismatches:   0
  [displayb] Total:  10, Matches:  10, Mismatches:   0
   [compare] Total:  15, Matches:  15, Mismatches:   0
    [obtain] Total:  44, Matches:  44, Mismatches:   0
 [clearlist] Total:   3, Matches:   3, Mismatches:   0
    [rmlist] Total:   3, Matches:   3, Mismatches:   0
  [swapnode] Total:   9, Matches:   9, Mismatches:   0
  [sortlist] Total:  27, Matches:  27, Mismatches:   0
======================================================
   [RESULTS] Total: 226, Matches: 226, Mismatches:   0
====================================================== 
lab46:~/src/data/sll3$ 

Submission

Project Submission

When you are done with the project and are ready to submit it, you simply run make submit:

lab46:~/src/data/PROJECT$ make submit
...

Submission Criteria

To be successful in this project, the following criteria must be met:

  • Project must be submit on time, by the posted deadline.
    • Early submissions will earn 1 bonus point per full day in advance of the deadline.
      • Bonus eligibility requires an honest attempt at performing the project (no blank efforts accepted)
    • Late submissions will lose 25% credit per day, with the submission window closing on the 4th day following the deadline.
      • To clarify: if a project is due on Wednesday (before its end), it would then be 25% off on Thursday, 50% off on Friday, 75% off on Saturday, and worth 0% once it becomes Sunday.
      • Certain projects may not have a late grace period, and the due date is the absolute end of things.
  • all requested functions must be implemented in the related library
  • all requested functionality must conform to stated requirements (either on this project page or in comment banner in source code files themselves).
  • Output generated must conform to any provided requirements and specifications (be it in writing or sample output)
    • output obviously must also be correct based on input.
  • Processing must be correct based on input given and output requested
  • Project header files are NOT to be altered. During evaluation the stock header files will be copied in, which could lead to compile-time problems.
  • Code must compile cleanly.
    • Each source file must compile cleanly (worth 3 total points):
      • 3/3: no compiler warnings, notes or errors.
      • 2/3: one of warning or note present during compile
      • 1/3: two of warning or note present during compile
      • 0/3: compiler errors present (code doesn't compile)
  • Code must be nicely and consistently indented (you may use the indent tool)
    • You are free to use your own coding style, but you must be consistent
    • Avoid unnecessary blank lines (some are good for readability, but do not go overboard- double-spacing your code will get points deducted).
    • Indentation will be rated on the following scale (worth 3 total points):
      • 3/3: Aesthetically pleasing, pristine indentation, easy to read, organized
      • 2/3: Mostly consistent indentation, but some distractions (superfluous or lacking blank lines, or some sort of “busy” ness to the code)
      • 1/3: Some indentation issues, difficult to read
      • 0/3: Lack of consistent indentation (didn't appear to try)
  • Unless fundamentally required, none of your code should perform any inventory or manual counting. Basing your algorithms off such fixed numbers complicates things, and is demonstrative of a more controlling nature.
  • Code must be commented
    • Any “to be implemented” comments MUST be removed
      • these “to be implemented” comments, if still present at evaluation time, will result in points being deducted.
    • Commenting will be rated on the following scale (worth 3 total points):
      • 3/3: Aesthetically pleasing (comments aligned or generally not distracting), easy to read, organized
      • 2/3: Mostly consistent, some distractions or gaps in comments (not explaining important things)
      • 1/3: Light commenting effort, not much time or energy appears to have been put in.
      • 0/3: No original comments
      • should I deserve nice things, my terminal is usually 90 characters wide. So if you'd like to format your code not to exceed 90 character wide terminals (and avoid line wrapping comments), at least as reasonably as possible, those are two sure-fire ways of making a good impression on me with respect to code presentation and comments.
    • Sufficient comments explaining the point of provided logic MUST be present
  • Code must be appropriately modified
    • Appropriate modifications will be rated on the following scale (worth 3 total points):
      • 3/3: Complete attention to detail, original-looking implementation- also is not unnecessarily reinventing existing functionality
      • 2/3: Lacking some details (like variable initializations), but otherwise complete (still conforms, or conforms mostly to specifications), and reinvents some wheels
      • 1/3: Incomplete implementation (typically lacking some obvious details/does not conform to specifications)
      • 0/3: Incomplete implementation to the point of non-functionality (or was not started at all)
    • Implementation must be accurate with respect to the spirit/purpose of the project (if the focus is on exploring a certain algorithm to produce results, but you avoid the algorithm yet still produce the same results– that's what I'm talking about here).. worth 3 total points:
      • 3/3: Implementation is in line with spirit of project
      • 2/3: Some avoidance/shortcuts taken (note this does not mean optimization– you can optimize all you want, so long as it doesn't violate the spirit of the project).
      • 1/3: Generally avoiding the spirit of the project (new, different things, resorting to old and familiar, despite it being against the directions)
      • 0/3: entirely avoiding.
    • Error checking must be adequately and appropriately performed, according to the following scale (worth 3 total points):
      • 3/3: Full and proper error checking performed for all reasonable cases, including queries for external resources and data.
      • 2/3: Enough error checking performed to pass basic project requirements and work for most operational cases.
      • 1/3: Minimal error checking, code is fragile (code may not work in full accordance with project requirements)
      • 0/3: No error checking (code likely does not work in accordance with project requirements)
  • Any and all non-void functions written must have, at most, 1 return statement
    • points will be lost for solutions containing multiple return statements in a function.
  • Absolutely, positively NO (as in ZERO) use of goto statements.
    • points will most definitely be lest for solutions employing such things.
  • Track/version the source code in a repository
  • Filling out any submit-time questionnaires
  • Submit a copy of your source code to me using the submit tool (make submit will do this) by the deadline.
haas/fall2019/data/projects/sll3.txt · Last modified: 2018/10/01 09:31 by 127.0.0.1