Math 1620 Calculus II
Corning Community College
Instructor: J.Hurlburt
Directions: Please show all your work neatly and clearly. You will not receive full credit unless you show all work. Unless otherwise indicated, each problem is worth 6 points.

1. Determine the following. If the integral is definite, please leave your answer in simplified exact form.
a. $\int_{0}^{\pi / 2} \frac{\cos x}{4+\sin ^{2} x} d x$
b. $\int \frac{2 x-3}{\sqrt{1-x^{2}}} d x$
c. $\int \frac{1}{(x-2) \sqrt{x^{2}-4 x}} d x$
d. $\int \frac{\operatorname{sech}(1 / x) \tanh (1 / x)}{x^{2}} d x$
e. $\int_{0}^{4} \frac{1}{25-x^{2}} d x$
f. $\int \frac{d x}{x^{2}-4 x+7}$
g. $\int \frac{x}{\sqrt{x^{4}-1}} d x$
2. Determine the derivative:
a. $f(x)=\tanh \left(2 x^{3}+1\right)$
b. $\quad g(t)=\arctan (\sinh t)$
c. $y=\cosh ^{-1}(3 x)$
3. Determine whether the function $y=x^{3}$ is a solution of the differential equation $x^{2} y^{\prime}+3 y=6 x^{3}$
4. Find the principal P that must be invested at the rate of 7%, compounded continuously, so that $\$ 500,000$ is available after 20 years (for Jay to retire).
5. (10 pts) In some chemical reactions, the rate at which the amount of a substance changes with time is proportional to the amount present. For the change of δ-gluconolactone into gluconic acid, for example,

$$
\frac{d y}{d t}=-0.6 y
$$

when t is measured in hours.
a. Solve the differential equation to determine y as a function of t.
b. If there are 100 grams of δ-gluconolactone present when $t=0$, how many grams will be left after the first hour?
6. (9 points) Find the particular solution of the differential equation:
$y \frac{d y}{d x}=e^{x}$ with initial conditions: $y(0)=4$
7. (9 points) Solve the differential equation $y^{\prime}=x(1+y)$

