Table of Contents

Hello World! lol

Number Systems Conversions

A selection of different problems for your solving pleasure. Be sure to focus on the process, not just the answer.

Powers of 2

Exponent Value
2e0 1
2e1 2
2e2 4
2e3 8
2e4 16
2e5 32
2e6 64
2e7 128
2e8 256
2e9 512
2e10 1024
2e11 2048
2e12 4096
2e13 8192
2e14 16384
2e15 32768
2e16 65536
2e17 131072
2e18 262144
2e19 524288
2e20 1048576

Powers of 8

Exponent Value
8e0 1
8e1 8
8e2 64
8e3 512
8e4 4096
8e5 32768
8e6 262144
8e7 2097152
8e8 16777216
8e9 134217728
8e10 1073741824
8e11 8589934592

Powers of 16

Exponent Value
16e0 1
16e1 16
16e2 256
16e3 4096
16e4 65536
16e5 1048576
16e6 16777216
16e7 268435456

Conversions between Powers of 2

Binary Number Octal Number Hexadecimal Number
0101011101 0535 15D
000111010101100 07254 0EAC
11011110101011 33653 37AB
00110100010111111011 0642773 345FB
000101100101010001010 0545212 02CA8A
11111110110111000110010101000011 FEDC6543 FEDC6543

Conversions involving Base 10

Binary Number Octal Number Decimal Number Hexadecimal Number
11011011000 3330 ? 6D8
111111111 777 ? 1FF
1000000000 1000 ? 002
000111111111111 07777 ? 0FFF
000001000000000000000000 01000000 ? ?
000110101101011101 065535 ? ?
? ? 1000 ?
? ? 7168 ?
? ? 16383 ?
0001000000000000 010000 4096 1000
1111111111111111 177777 ? FFFF
0101101001011010 ? ? 5A5A

Challenge

Not required, but a good test of concepts.

Exponent Value
7e0 1
7e1 7
7e2 49
7e3 343
7e4 2401
7e5 16807
Binary Number Septal? Number Octal Number Decimal Number Hexadecimal Number
? 1234 ? ? ?
? 6144 ? ? ?

<html>

For anyone who was confused by the lesson on “Number Systems”, here are some extra examples to help you all to understand the seemingly complex, yet very basic, logic behind it: <font face=“pa”> <table border=“1” cellspacing=“0” bordercolor=“#000000” cellpadding=“3” width=“400” align=“center”>

<caption>Base Correlation Chart</caption>

<tr>
      <td align="middle" bgcolor="#94dafc"><em>Binary</em> Base <strong>2</strong>  </td>
      <td align="middle" bgcolor="#fefeda"><em>Octal</em> Base <strong>8</strong>  </td>
      <td align="middle" bgcolor="#e0f4fe"><em>Decimal</em> Base <strong>10</strong> </td>
      <td align="middle" bgcolor="#fefeda"><em>Hexacedimal</em> Base <strong>16</strong>  </td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">0</td>
  <td align="right" bgcolor="#fefeda">0</td>
  <td align="right" bgcolor="#e0f4fe">0</td>
  <td align="right" bgcolor="#fefeda">0</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">1</td>
  <td align="right" bgcolor="#fefeda">1</td>
  <td align="right" bgcolor="#e0f4fe">1</td>
  <td align="right" bgcolor="#fefeda">1</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">10</td>
  <td align="right" bgcolor="#fefeda">2</td>
  <td align="right" bgcolor="#e0f4fe">2</td>
  <td align="right" bgcolor="#fefeda">2</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">11</td>
  <td align="right" bgcolor="#fefeda">3</td>
  <td align="right" bgcolor="#e0f4fe">3</td>
  <td align="right" bgcolor="#fefeda">3</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">100</td>
  <td align="right" bgcolor="#fefeda">4</td>
  <td align="right" bgcolor="#e0f4fe">4</td>
  <td align="right" bgcolor="#fefeda">4</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">101</td>
  <td align="right" bgcolor="#fefeda">5</td>
  <td align="right" bgcolor="#e0f4fe">5</td>
  <td align="right" bgcolor="#fefeda">5</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">110</td>
  <td align="right" bgcolor="#fefeda">6</td>
  <td align="right" bgcolor="#e0f4fe">6</td>
  <td align="right" bgcolor="#fefeda">6</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">111</td>
  <td align="right" bgcolor="#fefeda">7</td>
  <td align="right" bgcolor="#e0f4fe">7</td>
  <td align="right" bgcolor="#fefeda">7</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">1000</td>
  <td align="right" bgcolor="#fefeda">10</td>
  <td align="right" bgcolor="#e0f4fe">8</td>
  <td align="right" bgcolor="#fefeda">8</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">1001</td>
  <td align="right" bgcolor="#fefeda">11</td>
  <td align="right" bgcolor="#e0f4fe">9</td>
  <td align="right" bgcolor="#fefeda">9</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">1010</td>
  <td align="right" bgcolor="#fefeda">12</td>
  <td align="right" bgcolor="#e0f4fe">10</td>
  <td align="right" bgcolor="#fefeda">A</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">1011</td>
  <td align="right" bgcolor="#fefeda">13</td>
  <td align="right" bgcolor="#e0f4fe">11</td>
  <td align="right" bgcolor="#fefeda">B</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">1100</td>
  <td align="right" bgcolor="#fefeda">14</td>
  <td align="right" bgcolor="#e0f4fe">12</td>
  <td align="right" bgcolor="#fefeda">C</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">1101</td>
  <td align="right" bgcolor="#fefeda">15</td>
  <td align="right" bgcolor="#e0f4fe">13</td>
  <td align="right" bgcolor="#fefeda">D</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">1110</td>
  <td align="right" bgcolor="#fefeda">16</td>
  <td align="right" bgcolor="#e0f4fe">14</td>
  <td align="right" bgcolor="#fefeda">E</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">1111</td>
  <td align="right" bgcolor="#fefeda">17</td>
  <td align="right" bgcolor="#e0f4fe">15</td>
  <td align="right" bgcolor="#fefeda">F</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">10000</td>
  <td align="right" bgcolor="#fefeda">20</td>
  <td align="right" bgcolor="#e0f4fe">16</td>
  <td align="right" bgcolor="#fefeda">10</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">10001</td>
  <td align="right" bgcolor="#fefeda">21</td>
  <td align="right" bgcolor="#e0f4fe">17</td>
  <td align="right" bgcolor="#fefeda">11</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">10010</td>
  <td align="right" bgcolor="#fefeda">22</td>
  <td align="right" bgcolor="#e0f4fe">18</td>
  <td align="right" bgcolor="#fefeda">12</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">10011</td>
  <td align="right" bgcolor="#fefeda">23</td>
  <td align="right" bgcolor="#e0f4fe">19</td>
  <td align="right" bgcolor="#fefeda">13</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">10100</td>
  <td align="right" bgcolor="#fefeda">24</td>
  <td align="right" bgcolor="#e0f4fe">20</td>
  <td align="right" bgcolor="#fefeda">14</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">10101</td>
  <td align="right" bgcolor="#fefeda">25</td>
  <td align="right" bgcolor="#e0f4fe">21</td>
  <td align="right" bgcolor="#fefeda">15</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">10110</td>
  <td align="right" bgcolor="#fefeda">26</td>
  <td align="right" bgcolor="#e0f4fe">22</td>
  <td align="right" bgcolor="#fefeda">16</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">10111</td>
  <td align="right" bgcolor="#fefeda">27</td>
  <td align="right" bgcolor="#e0f4fe">23</td>
  <td align="right" bgcolor="#fefeda">17</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">11000</td>
  <td align="right" bgcolor="#fefeda">30</td>
  <td align="right" bgcolor="#e0f4fe">24</td>
  <td align="right" bgcolor="#fefeda">18</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">11001</td>
  <td align="right" bgcolor="#fefeda">31</td>
  <td align="right" bgcolor="#e0f4fe">25</td>
  <td align="right" bgcolor="#fefeda">19</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">11010</td>
  <td align="right" bgcolor="#fefeda">32</td>
  <td align="right" bgcolor="#e0f4fe">26</td>
  <td align="right" bgcolor="#fefeda">1A</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">11011</td>
  <td align="right" bgcolor="#fefeda">33</td>
  <td align="right" bgcolor="#e0f4fe">27</td>
  <td align="right" bgcolor="#fefeda">1B</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">11100</td>
  <td align="right" bgcolor="#fefeda">34</td>
  <td align="right" bgcolor="#e0f4fe">28</td>
  <td align="right" bgcolor="#fefeda">1C</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">11101</td>
  <td align="right" bgcolor="#fefeda">35</td>
  <td align="right" bgcolor="#e0f4fe">29</td>
  <td align="right" bgcolor="#fefeda">1D</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">11110</td>
  <td align="right" bgcolor="#fefeda">36</td>
  <td align="right" bgcolor="#e0f4fe">30</td>
  <td align="right" bgcolor="#fefeda">1E</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">11111</td>
  <td align="right" bgcolor="#fefeda">37</td>
  <td align="right" bgcolor="#e0f4fe">31</td>
  <td align="right" bgcolor="#fefeda">1F</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">100000</td>
  <td align="right" bgcolor="#fefeda">40</td>
  <td align="right" bgcolor="#e0f4fe">32</td>
  <td align="right" bgcolor="#fefeda">20</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">100001</td>
  <td align="right" bgcolor="#fefeda">41</td>
  <td align="right" bgcolor="#e0f4fe">33</td>
  <td align="right" bgcolor="#fefeda">21</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">100010</td>
  <td align="right" bgcolor="#fefeda">42</td>
  <td align="right" bgcolor="#e0f4fe">34</td>
  <td align="right" bgcolor="#fefeda">22</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">100011</td>
  <td align="right" bgcolor="#fefeda">43</td>
  <td align="right" bgcolor="#e0f4fe">35</td>
  <td align="right" bgcolor="#fefeda">23</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">100100</td>
  <td align="right" bgcolor="#fefeda">44</td>
  <td align="right" bgcolor="#e0f4fe">36</td>
  <td align="right" bgcolor="#fefeda">24</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">100101</td>
  <td align="right" bgcolor="#fefeda">45</td>
  <td align="right" bgcolor="#e0f4fe">37</td>
  <td align="right" bgcolor="#fefeda">25</td></tr>
<tr>
  <td align="right" bgcolor="#e0f4fe">100110</td>
  <td align="right" bgcolor="#fefeda">46</td>
  <td align="right" bgcolor="#e0f4fe">38</td>
  <td align="right" bgcolor="#fefeda">26</td></tr></table>

</font>

Let's use the example of the Octal value 24. Why is Octal 24 equal to the number 20 in our typical “base 10” lives? Because equivalent values existing in the <i>different</i> bases are… well… <i>different</i>. There is no existant “8”, or “9” digit in an Octal system, therefore we lose the ability to use those digits. “19” and “98”, for example, can not exist without having access to the digits 8 and 9. This means that we need to “carry” or extend our work to the next column over when we reach this imaginary “ceiling”, if you will, of the base. <br><br>

Now lets try switching bases, but preserving the <i>SAME</i> value (we'll work in base 10 since that is what most people are most familiar with). This can be done by recognizing that a “carry” must happen once we have reached our maximum digit in any given base but still need to continue counting. With Base 10 we do this after we reach the digit 9. We increase the value of the left-most value by one to continue counting upward.<br><br>

Here's an Example:<br><br>

When dealing with the digit 9410 (Base 10), we can represent any values <i>preceeding</i> the 9 as 0's. The number 000094 is the same as just plain 94. If placed in front of something, 0 has <i>NO</i> value.<br><br>

Understanding this, we should be able to recognize that once we reach 99, and need to continue, we will be able to roll one of the imaginary leading zeros up to our next digit and reset everything that follows.<br><br>

Counting upward in Base 10:<br><br> 000094<br> 000095<br> 000096<br> 000097<br> 000098<br> 000099<br> 000100 - We simply call this 100, and typically ignore the laws behind why it's a 1 followed by two 0's (The same<br> 000101 &nbsp;&nbsp; goes for 10, or 1,000, 10,000, and so on…)<br> 000102<br><br>

We're going to increase the value of our column to the left by 1 factor each time we reach our maximum in the column to it's right. If we apply this concept while counting in any base then we should be able to list the numbers of any number system consecutively. Becoming familiar is simply a matter of practice. </html>