=====discrete Keyword 1===== nonimplication/difference/but not ====Definition==== Nonimplicion/difference/but not means that the only true output is if p is true and q is false. Everything else is false. So if p is 0 and q is 1 the output should be 0. ====References==== * http://en.wikipedia.org/wiki/Material_nonimplication =====discrete Keyword 1 Phase 2===== Converse Nonimplication ====Definition==== Converse Non-implication is the negation of the reverse of implication. implication is if ... then where it is only false if the first term "p" is true and the second term "q" is false so converse non-implication is only true if the first term "p" is false and the second term "q" is true ====References==== *http://en.wikipedia.org/wiki/Converse_nonimplication *http://en.wikipedia.org/wiki/Conversion_(logic) *http://simple.wikipedia.org/wiki/Implication_(logic) *http://en.wikipedia.org/wiki/Converse_implication ====Demonstration==== Demonstration of the indicated keyword. If you wish to aid your definition with a code sample, you can do so by using a wiki **code** block, an example follows: /* * converse nonimplication */ #include char nonimp(char, char); int main() { char p; char q; char r; printf(" Nonimplicaton \n Truth Table\n"); printf("- - - - - - - -\n"); printf("| P | Q | X |\n"); printf("- - - - - - - -\n"); p = 0; q = 0; printf("| %d | %d | %d |\n", p,q, nonimp(p,q)); p = 0; q = 1; printf("| %d | %d | %d |\n", p,q, nonimp(p,q)); p = 1; q = 0; printf("| %d | %d | %d |\n", p,q,nonimp(p,q)); p = 1; q = 1; printf("| %d | %d | %d |\n", p,q,nonimp(p,q)); printf("- - - - - - - - \n"); printf("Number for p: "); scanf("%hhd%*c", &p); printf("Number for q: "); scanf("%hhd", &q); printf("Number for r: "); scanf("%hhd", &r); printf("- - - - - - - -\n "); printf("%d | %d | %d | %d\n" ,p,q,r, nonimp(p,q)); } char nonimp(char p, char q) { char r; char result; if((p == 1) & (q == 0) & (r == 0) ) result = 0; else result = 1; return(result); } Alternatively (or additionally), if you want to demonstrate something on the command-line, you can do so as follows: lab46:~$ gcc -o cnonimp cnonimp.c lab46:~$ ./cnonimp Nonimplicaton Truth Table - - - - - - - - | P | Q | X | - - - - - - - - | 0 | 0 | 1 | | 0 | 1 | 1 | | 1 | 0 | 0 | | 1 | 1 | 1 | - - - - - - - - Number for p: 0 Number for q: 0 Number for r: 1 - - - - - - - - 0 | 0 | 1 | 1 lab46:~$